

Welcome to MythX CLI’s documentation!

Contents:

	A PythX-driven CLI for MythX
	What is MythX?

	Usage

	Installation

	Installation
	Stable release

	From sources

	Usage
	Format Options

	Authentication

	The Analysis Functionality

	Listing Past Analyses

	Fetching Analysis Reports

	Fetching Analysis Status

	Fetching API Version Information

	The MythX CLI
	mythx_cli package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.2.0 (2019-10-04)

	0.1.8 (2019-09-16)

	0.1.7 (2019-09-16)

	0.1.6 (2019-09-15)

	0.1.5 (2019-09-15)

	0.1.4 (2019-09-13)

	0.1.3 (2019-09-13)

	0.1.2 (2019-09-13)

	0.1.1 (2019-09-13)

	0.1.0 (2019-08-31)

Indices and tables

	Index

	Module Index

	Search Page

A PythX-driven CLI for MythX

[image: _images/mythx-cli.svg]
 [https://pypi.python.org/pypi/mythx-cli][image: _images/mythx-cli1.svg]
 [https://travis-ci.org/dmuhs/mythx-cli][image: _images/badge.svg]
 [https://coveralls.io/github/dmuhs/mythx-cli?branch=master][image: Documentation Status]
 [https://mythx-cli.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/dmuhs/mythx-cli/]This package aims to provide a simple to use command line interface for the MythX [https://mythx.io/] smart contract
security analysis API. It’s main purpose is to demonstrate how advanced features can be implemented using the
PythX [https://github.com/dmuhs/pythx/] Python language bindings for MythX to simplify API interaction.

What is MythX?

MythX is a security analysis API that allows anyone to create purpose-built security tools for smart
contract developers. Tools built on MythX integrate seamlessly into the development environments and
continuous integration pipelines used throughout the Ethereum ecosystem.

Usage

$ mythx
Usage: mythx [OPTIONS] COMMAND [ARGS]...

 Your CLI for interacting with https://mythx.io/

Options:
 --debug / --no-debug Provide additional debug output
 --access-token TEXT Your access token generated from the MythX
 dashboard
 --eth-address TEXT Your MythX account's Ethereum address
 --password TEXT Your MythX account's password as set in the
 dashboard
 --format [simple|json|json-pretty]
 The format to display the results in
 --help Show this message and exit.

Commands:
 analyze Analyze the given directory or arguments with MythX.
 list Get a list of submitted analyses.
 report Fetch the report for a single or multiple job UUIDs.
 status Get the status of an already submitted analysis.
 version Display API version information.

Installation

The MythX CLI runs on Python 3.6+, including 3.8-dev and pypy.

To get started, simply run

$ pip3 install mythx-cli

Alternatively, clone the repository and run

$ pip3 install .

Or directly through Python’s setuptools:

$ python3 setup.py install

	Free software: MIT license

	Documentation: https://mythx-cli.readthedocs.io.

Installation

Stable release

To install MythX CLI, run this command in your terminal:

$ pip install mythx-cli

This is the preferred method to install MythX CLI, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for MythX CLI can be downloaded from the Github repo [https://github.com/dmuhs/mythx-cli].

You can either clone the public repository:

$ git clone git://github.com/dmuhs/mythx-cli

Or download the tarball [https://github.com/dmuhs/mythx-cli/tarball/master]:

$ curl -OL https://github.com/dmuhs/mythx-cli/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Format Options

A format option is passed to the --format option of the mythx
root command. E.g.:

$ mythx --format json-pretty report ab9092f7-54d0-480f-9b63-1bb1508280e2

This will print the report for the given analysis job UUID in pretty-printed
JSON format to stdout. Currently the following formatters are avialable:

	simple (default): Print the results in simple plain text (easy to
grep). This does not include all result data but a subset of it that seems
relevant for most use-cases.

	json: Print all of the result data as a single-line JSON string to
stdout.

	json-pretty: The same as json, just pretty-printed, with an
indentation of two spaces and alphabetically sorted object keys.

Authentication

By default the MythX CLI authenticates the user under the free trial account.
This means that no account needs to be created on first use. Simply run an
analysis, fetch the results and enjoy the free MythX service!

Of course, registering for a free MythX account and upgrading come with
additional perks <https://mythx.io/plans/>. If you have set up an account,
head over to the MythX analysis dashboard <https://dashboard.mythx.io/>.
Head to your Profile settings and enter your password in the MythX API Key
section. You will be able to copy a new API access token once it has been
generated. Set the environment variable MYTHX_ACCESS_TOKEN with your
JWT token and start using the MythX CLI as authenticated user. You will be
able to see all your submitted analyses, their status, reports, and more on
the dashboard.

Note that you can also pass the JWT token directly to the CLI via the
--access-token option. For security reasons it is however
recommended to always pass the token through a pre-defined environment
variable or a shell script you source from.

Alternatively, username and password can be used for authentication. This
functionality is considered deprecated due to security concerns and will be
removed from the MythX API in the future. For compatibility reasons it has
been included, however. The username corresponds to the Ethereum address the
MythX account has been registered under, and the password is the one that the
user can set in the MythX dashboard. Both can be passed with the
--eth-address and --password option respectively, or by setting
the MYTHX_ETH_ADDRESS and MYTHX_PASSWORD environment variables.

Note that if an access token is passed in directly as well, it will take
precedence and no login with username and password is performed.

The Analysis Functionality

Usage: mythx analyze [OPTIONS] [TARGET]...

Options:
--async / --wait Submit the job and print the UUID, or wait for
 execution to finish
--mode [quick|full]
--help Show this message and exit.

Submit a new analysis to MythX. This command works in different scenarios,
simply by calling mythx analyze:

	Either truffle-config.js or truffle.js are found in the
directory. In this case, the MythX CLI checks the
<project_dir>/build/contracts path for artifact JSON files
generated by the truffle compile command. For each artifact found
a new job is submitted to the MythX API.

	If no Truffle project can be detected, the MythX CLI will automatically
enumerate all Solidity files (having the .sol extension) in the
current directory. A confirmation prompt will be displayed asking the user
to confirm the submission of the number of smart contracts found. This is
done to make sure a user does not accidentally submit a huge repository of
Solidity files (unless they actually want it). For automation purposes
the prompt can automatically be confirmed by piping yes into the
command, i.e. yes | mythx analyze.

	To analyze specific Solidity files or bytecode, data can also explicitly
be passed to the analyze subcommand. The two supported argument
types are creation bytecode strings (beginning with 0x) and
Solidity files (valid files ending with with .sol). The arguments
can have arbitrary order and for each a new analysis request will be
submitted.

If a Solidity file is analyzed in any of the given scenarios, the MythX CLI
will attempt to automatically compile the file and obtain data such as the
creation bytecode and the Solidity AST to enrich the request data submitted to
the MythX API. This will increase the number of detected issues (as e.g.
symbolic execution tools in the MythX backend can pick up on the bytecode), as
well as reduce the number of false positive issues. The MythX CLI will try to
estimate the solc version based on the pragma set in the source code.

Asynchronous Analysis

In any of the above scenarios the analyze subcommand will poll the
MythX API for job completion and print the analysis report in the
user-specified format. In some situations it might not be desired to wait for
the results. The MythX CLI offers an option to only submit the analysis, print
the job’s UUID, and exit. In any scenario, simply pass the --async
flag. E.g. in the scenario of a Continuous Integration (CI) server the
submitted UUIDs can be stored in the first step:

$ mythx analyze --async > uuids.txt

This file can be stored as a CI job artifact. Later, when the (potentially
very exhaustive and long) analysis run has finished, the reports can be
retrieved. This is done by simply providing the stored job IDs as an
argument list to the mythx report command:

$ cat uuids.txt | xargs mythx report

Optionally, the format can be changed here as well, e.g. to JSON, to allow
for easier automated processing further on.

Listing Past Analyses

Usage: mythx list [OPTIONS]

Options:
--number INTEGER RANGE The number of most recent analysis jobs to display
--help Show this message and exit.

This subcommand lists the past analyses associated to the current user. Note
that this functionality is not available for the default trial account to
ensure the confidentiality of analyses submitted by its users.

By default this subcommand will list the past five analyses associated to the
authenticated user account. The number of returned analyses can be updated by
passing the --number option. It is worth noting that in its current
version (v1.4.34.4) the API returns only objects of 20 analyses per
call. If a number greater than this is passed to mythx list, the MythX
CLI will automatically query the next page until the desired number is
reached.

To prevent too many network requests, the maximum number of analyses that can
be fetched it capped at 100.:

$ mythx list
UUID: ab9d5681-0283-4ac5-bedb-1d241b5f2bf5
Submitted at: 2019-09-13 14:21:15.063000+00:00
Status: Finished

UUID: f5e4b742-5c90-4ee2-9079-4efaec9d4e2c
Submitted at: 2019-09-13 14:21:13.582000+00:00
Status: Finished

UUID: a5f9d7c7-7d33-440d-bea7-6ad8e1b2b734
Submitted at: 2019-09-13 14:21:11.367000+00:00
Status: Finished

UUID: f66d3c91-bc77-49a2-9e84-7e00c8689b0f
Submitted at: 2019-09-13 14:21:07.076000+00:00
Status: Finished

UUID: f1164a4c-91a6-4d81-a12f-6519090cb81e
Submitted at: 2019-09-13 14:21:05.386000+00:00
Status: Finished

Fetching Analysis Reports

Usage: mythx report [OPTIONS] [UUIDS]...

Options:
--help Show this message and exit.

This subcommand prints the report of one or more finished analyses in the
user-specified format. By default, it will print a simple text representation
of the report to stdout. This will alos resolve the report’s source map
locations to the corresponding line and column numbers in the Solidity source
file. This is only possible if the user has specified the source map in their
request and is passing the Solidity source code as text.:

$ mythx report ab9092f7-54d0-480f-9b63-1bb1508280e2
UUID: ab9092f7-54d0-480f-9b63-1bb1508280e2
Title: Assert Violation (Low)
Description: It is possible to trigger an exception (opcode 0xfe). Exceptions can be caused by type errors, division by zero, out-of-bounds array access, or assert violations. Note that explicit `assert()` should only be used to check invariants. Use `require()` for regular input checking.

/home/spoons/diligence/mythx-qa/land/contracts/estate/EstateStorage.sol:24
 mapping(uint256 => uint256[]) public estateLandIds;

Fetching Analysis Status

Usage: mythx status [OPTIONS] [UUIDS]...

Options:
--help Show this message and exit.

This subcommand prints the status of an already submitted analysis.:

$ mythx --staging status 381eff48-04db-4f81-a417-8394b6614472
UUID: 381eff48-04db-4f81-a417-8394b6614472
Submitted at: 2019-09-05 20:34:27.606000+00:00
Status: Finished

By default a simple text representation is printed to stdout, more data on the
MythX API’s status response can be obtained by specifying an alternative output
format such as json-pretty.

Fetching API Version Information

Usage: mythx version [OPTIONS]

Options:
--help Show this message and exit.

This subcommand hits the MythX API’s /version endpoint and obtains
version information on the API. This can be especially useful for continuous
scans as the backend tool capabilities of MythX are constantly being improved.
This means that it’s a good idea to rerun old scans with newer versions of
MythX as potentially more vulnerabilities can be found, false positives are
removed, and additional helpful data can be returned.

The MythX team has included a hash of all versions so changes are easily
noticed simply by comparing the hash an analysis has run under with the one
returned by the API.:

$ mythx version
API: v1.4.34.4
Harvey: 0.0.33
Maru: 0.5.3
Mythril: 0.21.14
Hashed: 00c17c8b0ae13bebc9a7f678d8ee55db

This output can be adapted using the --format parameter as well to
fetch e.g. JSON output for easier parsing.

The MythX CLI

	mythx_cli package
	Subpackages
	mythx_cli.formatter package
	mythx_cli.formatter.base

	mythx_cli.formatter.json

	mythx_cli.formatter.simple_stdout

	mythx_cli.formatter.tabular

	mythx_cli.payload package
	mythx_cli.payload.bytecode

	mythx_cli.payload.solidity

	mythx_cli.payload.truffle

	mythx_cli.cli

	mythx_cli.util

mythx_cli package

Subpackages

	mythx_cli.formatter package
	mythx_cli.formatter.base

	mythx_cli.formatter.json

	mythx_cli.formatter.simple_stdout

	mythx_cli.formatter.tabular

	mythx_cli.payload package
	mythx_cli.payload.bytecode

	mythx_cli.payload.solidity

	mythx_cli.payload.truffle

mythx_cli.cli

The main runtime of the MythX CLI.

	
mythx_cli.cli.find_solidity_files(project_dir)

	Return all Solidity files in the given directory.

This will match all files with the .sol extension.

	Parameters

	project_dir – The directory to search in

	Returns

	Solidity files in project_dir or None

	
mythx_cli.cli.find_truffle_artifacts(project_dir)

	Look for a Truffle build folder and return all relevant JSON artifacts.

This function will skip the Migrations.json file and return all other files
under <project-dir>/build/contracts/. If no files were found,
None is returned.

	Parameters

	project_dir – The base directory of the Truffle project

	Returns

	Files under <project-dir>/build/contracts/ or None

mythx_cli.util

mythx_cli.formatter package

mythx_cli.formatter.base

This module contains the base formatter interface.

	
class mythx_cli.formatter.base.BaseFormatter

	Bases: abc.ABC

The base formatter interface for printing various response types.

	
static format_analysis_list(obj: mythx_models.response.analysis_list.AnalysisListResponse)

	Format an analysis list response.

	
static format_analysis_status(resp: mythx_models.response.analysis_status.AnalysisStatusResponse) → str

	Format an analysis status response.

	
static format_detected_issues(obj: mythx_models.response.detected_issues.DetectedIssuesResponse, inp: mythx_models.response.analysis_input.AnalysisInputResponse)

	Format an issue report response.

	
static format_version(obj: mythx_models.response.version.VersionResponse)

	Format a version response.

mythx_cli.formatter.json

This module contains the compressed and pretty-printing JSON formatters.

	
class mythx_cli.formatter.json.JSONFormatter

	Bases: mythx_cli.formatter.base.BaseFormatter

	
static format_analysis_list(resp: mythx_models.response.analysis_list.AnalysisListResponse) → str

	Format an analysis list response as compressed JSON.

	
static format_analysis_status(resp: mythx_models.response.analysis_status.AnalysisStatusResponse) → str

	Format an analysis status response as compressed JSON.

	
static format_detected_issues(resp: mythx_models.response.detected_issues.DetectedIssuesResponse, inp: mythx_models.response.analysis_input.AnalysisInputResponse) → str

	Format an issue report response as compressed JSON.

	
static format_version(resp: mythx_models.response.version.VersionResponse) → str

	Format a version response as compressed JSON.

	
class mythx_cli.formatter.json.PrettyJSONFormatter

	Bases: mythx_cli.formatter.base.BaseFormatter

	
static format_analysis_list(obj: mythx_models.response.analysis_list.AnalysisListResponse) → str

	Format an analysis list response as pretty-printed JSON.

	
static format_analysis_status(obj: mythx_models.response.analysis_status.AnalysisStatusResponse) → str

	Format an analysis status response as pretty-printed JSON.

	
static format_detected_issues(obj: mythx_models.response.detected_issues.DetectedIssuesResponse, inp: mythx_models.response.analysis_input.AnalysisInputResponse)

	Format an issue report response as pretty-printed JSON.

	
static format_version(obj: mythx_models.response.version.VersionResponse)

	Format a version response as pretty-printed JSON.

mythx_cli.formatter.simple_stdout

This module contains a simple text formatter class printing a subset of the response data.

	
class mythx_cli.formatter.simple_stdout.SimpleFormatter

	Bases: mythx_cli.formatter.base.BaseFormatter

	
static format_analysis_list(resp: mythx_models.response.analysis_list.AnalysisListResponse) → str

	Format an analysis list response to a simple text representation.

	
static format_analysis_status(resp: mythx_models.response.analysis_status.AnalysisStatusResponse) → str

	Format an analysis status response to a simple text representation.

	
static format_detected_issues(resp: mythx_models.response.detected_issues.DetectedIssuesResponse, inp: mythx_models.response.analysis_input.AnalysisInputResponse) → str

	Format an issue report to a simple text representation.

	
static format_version(resp: mythx_models.response.version.VersionResponse) → str

	Format a version response to a simple text representation.

mythx_cli.formatter.tabular

This module contains a tabular data formatter class printing a subset of the response data.

	
class mythx_cli.formatter.tabular.TabularFormatter

	Bases: mythx_cli.formatter.base.BaseFormatter

	
static format_analysis_list(resp: mythx_models.response.analysis_list.AnalysisListResponse) → str

	Format an analysis list response to a tabular representation.

	
static format_analysis_status(resp: mythx_models.response.analysis_status.AnalysisStatusResponse) → str

	Format an analysis status response to a tabular representation.

	
static format_detected_issues(resp: mythx_models.response.detected_issues.DetectedIssuesResponse, inp: mythx_models.response.analysis_input.AnalysisInputResponse) → str

	Format an issue report to a tabular representation.

	
static format_version(resp: mythx_models.response.version.VersionResponse) → str

	Format a version response to a tabular representation.

mythx_cli.payload package

mythx_cli.payload.bytecode

This module contains functions to generate bytecode-only analysis request payloads.

	
mythx_cli.payload.bytecode.generate_bytecode_payload(code)

	Generate a payload containing only the creation bytecode.

	Parameters

	code – The creation bytecode as hex string starting with 0x

	Returns

	The payload dictionary to be sent to MythX

mythx_cli.payload.solidity

This module contains functions to generate Solidity-related payloads.

	
mythx_cli.payload.solidity.generate_solidity_payload(file)

	Generate a MythX analysis request from a given Solidity file.

This function will open the file, try to detect the used solc version from
the pragma definition, and automatically compile it. If the given solc
version is not installed on the client’s system, it will be automatically
downloaded.

From the solc output, the following data is sent to the MythX API for
analysis:

	abi

	ast

	bin

	bin-runtime

	srcmap

	srcmap-runtime

	Parameters

	file – The path pointing towards the Solidity file

	Returns

	The payload dictionary to be sent to MythX

mythx_cli.payload.truffle

This module contains functions to generate payloads for Truffle projects.

	
mythx_cli.payload.truffle.generate_truffle_payload(file)

	Generate a MythX analysis request payload based on a truffle build artifact.

This will send the following artifact entries to MythX for analysis:

	contractName

	bytecode

	deployedBytecode

	sourceMap

	deployedSourceMap

	sourcePath

	source

	ast

	legacyAST

	the compiler version

	Parameters

	file – The path to the Truffle build artifact

	Returns

	The payload dictionary to be sent to MythX

	
mythx_cli.payload.truffle.zero_srcmap_indices(src_map: str) → str

	Zero the source map file index entries.

	Parameters

	src_map – The source map string to process

	Returns

	The processed source map string

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dmuhs/mythx-cli/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

MythX CLI could always use more documentation, whether as part of the
official MythX CLI docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dmuhs/mythx-cli/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up mythx-cli for local development.

	Fork the mythx-cli repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/mythx-cli.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv mythx-cli
$ cd mythx-cli/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 mythx_cli tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6, 3.7, the 3.8-dev branch, and for PyPy.
Check https://travis-ci.org/dmuhs/mythx-cli/pull_requests and make sure that the
tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.<test_name>

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Dominik Muhs <dominik.muhs@consensys.net>

Contributors

None yet. Why not be the first?

History

0.2.0 (2019-10-04)

	Update PythX to 1.3.1

	Add tabular format option as new pretty default

	Update pytest to 5.2.0

	Various bugfixes

0.1.8 (2019-09-16)

	Update dependencies to account for new submodules

0.1.7 (2019-09-16)

	Update pythx from 1.2.4 to 1.2.5

	Clean stale imports, fix formatting issues

0.1.6 (2019-09-15)

	Improve CLI docstrings

	Add more formatter-related documentation

0.1.5 (2019-09-15)

	Add autodoc to Sphinx setup

	Add middleware for tool name field

	Enable pypy3 support

	Add more verbose documentation

	Allow username/password login

0.1.4 (2019-09-13)

	Fix Atom’s automatic Python import sorting (broke docs)

0.1.3 (2019-09-13)

	Fix faulty version generated by bumpversion

0.1.2 (2019-09-13)

	Fix bumpversion regex issue

0.1.1 (2019-09-13)

	Initial implementation

	Integrated Travis, PyUp, PyPI upload

0.1.0 (2019-08-31)

	First release on PyPI.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mythx_cli	

 	
 	
 mythx_cli.cli	

 	
 	
 mythx_cli.formatter.base	

 	
 	
 mythx_cli.formatter.json	

 	
 	
 mythx_cli.formatter.simple_stdout	

 	
 	
 mythx_cli.formatter.tabular	

 	
 	
 mythx_cli.payload.bytecode	

 	
 	
 mythx_cli.payload.solidity	

 	
 	
 mythx_cli.payload.truffle	

Index

 B
 | F
 | G
 | J
 | M
 | P
 | S
 | T
 | Z

B

 	
 	BaseFormatter (class in mythx_cli.formatter.base)

F

 	
 	find_solidity_files() (in module mythx_cli.cli)

 	find_truffle_artifacts() (in module mythx_cli.cli)

 	format_analysis_list() (mythx_cli.formatter.base.BaseFormatter static method)

 	(mythx_cli.formatter.json.JSONFormatter static method)

 	(mythx_cli.formatter.json.PrettyJSONFormatter static method)

 	(mythx_cli.formatter.simple_stdout.SimpleFormatter static method)

 	(mythx_cli.formatter.tabular.TabularFormatter static method)

 	format_analysis_status() (mythx_cli.formatter.base.BaseFormatter static method)

 	(mythx_cli.formatter.json.JSONFormatter static method)

 	(mythx_cli.formatter.json.PrettyJSONFormatter static method)

 	(mythx_cli.formatter.simple_stdout.SimpleFormatter static method)

 	(mythx_cli.formatter.tabular.TabularFormatter static method)

 	
 	format_detected_issues() (mythx_cli.formatter.base.BaseFormatter static method)

 	(mythx_cli.formatter.json.JSONFormatter static method)

 	(mythx_cli.formatter.json.PrettyJSONFormatter static method)

 	(mythx_cli.formatter.simple_stdout.SimpleFormatter static method)

 	(mythx_cli.formatter.tabular.TabularFormatter static method)

 	format_version() (mythx_cli.formatter.base.BaseFormatter static method)

 	(mythx_cli.formatter.json.JSONFormatter static method)

 	(mythx_cli.formatter.json.PrettyJSONFormatter static method)

 	(mythx_cli.formatter.simple_stdout.SimpleFormatter static method)

 	(mythx_cli.formatter.tabular.TabularFormatter static method)

G

 	
 	generate_bytecode_payload() (in module mythx_cli.payload.bytecode)

 	
 	generate_solidity_payload() (in module mythx_cli.payload.solidity)

 	generate_truffle_payload() (in module mythx_cli.payload.truffle)

J

 	
 	JSONFormatter (class in mythx_cli.formatter.json)

M

 	
 	mythx_cli.cli (module)

 	mythx_cli.formatter.base (module)

 	mythx_cli.formatter.json (module)

 	mythx_cli.formatter.simple_stdout (module)

 	
 	mythx_cli.formatter.tabular (module)

 	mythx_cli.payload.bytecode (module)

 	mythx_cli.payload.solidity (module)

 	mythx_cli.payload.truffle (module)

P

 	
 	PrettyJSONFormatter (class in mythx_cli.formatter.json)

S

 	
 	SimpleFormatter (class in mythx_cli.formatter.simple_stdout)

T

 	
 	TabularFormatter (class in mythx_cli.formatter.tabular)

Z

 	
 	zero_srcmap_indices() (in module mythx_cli.payload.truffle)

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to MythX CLI’s documentation!

 		
 A PythX-driven CLI for MythX

 		
 What is MythX?

 		
 Usage

 		
 Installation

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Format Options

 		
 Authentication

 		
 The Analysis Functionality

 		
 Asynchronous Analysis

 		
 Listing Past Analyses

 		
 Fetching Analysis Reports

 		
 Fetching Analysis Status

 		
 Fetching API Version Information

 		
 The MythX CLI

 		
 mythx_cli package

 		
 Subpackages

 		
 mythx_cli.cli

 		
 mythx_cli.util

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.0 (2019-10-04)

 		
 0.1.8 (2019-09-16)

 		
 0.1.7 (2019-09-16)

 		
 0.1.6 (2019-09-15)

 		
 0.1.5 (2019-09-15)

 		
 0.1.4 (2019-09-13)

 		
 0.1.3 (2019-09-13)

 		
 0.1.2 (2019-09-13)

 		
 0.1.1 (2019-09-13)

 		
 0.1.0 (2019-08-31)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

